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Thermoelectric effect enhanced by resonant states in graphene

M. Inglot,1 A. Dyrdał,2 V. K. Dugaev,1,3 and J. Barnaś2,4
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Thermoelectric effects in graphene are considered theoretically with particular attention paid to the role of

resonant scattering on impurities. Using the T -matrix method we calculate the impurity resonant states and the

momentum relaxation time due to scattering on impurities. The Boltzmann kinetic equation is used to determine

the thermoelectric coefficients. It is shown that the resonant impurity states near the Fermi level give rise to a

resonant enhancement of the Seebeck coefficient and figure of merit ZT . The Wiedemann-Franz ratio deviates

from that known for ordinary metals, where this ratio is constant and equal to the Lorentz number. This deviation

appears for small chemical potentials and in the vicinity of the resonant states. In the limit of a constant relaxation

time, this ratio has been calculated analytically for μ = 0.
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I. INTRODUCTION

Graphene, the first strictly two-dimensional crystal, was
extensively studied in the past few years, both experimentally
and theoretically. This enormous interest in graphene is a
consequence of its peculiar transport properties, which follow
from the very specific electronic structure of graphene [1,2].
Thermal and thermoelectric properties of graphene have
become a topical issue since the first measurement of thermal
conductivity in graphene by Balandin et al. [3]. It is known
that graphene is one of the best heat conductors, with a very
high thermal conductivity that is a consequence of the strong
sp2 bonding, small atomic mass, and low dimensionality
[4]. A giant thermoelectric effect in graphene was also
predicted theoretically [5], with the Seebeck coefficient equal
to 30 mV/K.

Impurities can substantially influence graphene’s energy
spectrum, so the thermoelectric transport strongly depends
not only on the thermal activation but also on the impurity
scattering mechanism. For the case of non-resonant scattering
from impurities, the thermal conductivity and thermopower
have been calculated by Stauber et al. [6]. They have found that
both these kinetic coefficients strongly depend on the density
of carriers and on the effective impurity (defect) radius.

The influence of impurity scattering on the thermoelectric
properties of graphene was also considered theoretically
using a self-consistent t-matrix approach by Löfwander
et al. [7]. From these considerations it follows that the
measured thermopower can be used to get some information on
the role of impurity scattering in graphene. The thermopower
near the Dirac point was considered by Wang et al. [8], who
obtained a relatively good agreement between experimental
data and theoretical results based on the Boltzmann transport
theory. These authors also showed that Mott’s relation fails
in the vicinity of the Dirac points in the case of high-
mobility graphene, being however satisfied for a wide range
of gate voltages in the regime of low carrier mobility. The
thermoelectric transport properties of graphene were also
considered within the model of Dirac fermions in the presence
of magnetic field and disorder [9–11].

Sharapov et al. [12] have found that the thermopower
can be remarkably enhanced by opening an energy gap
in the quasiparticle spectrum of graphene. The presence
of the energy gap is accompanied by the emergence of
a quasiparticle scattering channel, with the relaxation time
strongly dependent on energy. The thermoelectric effects
were also investigated in the case of multilayer graphene.
The thermopower of biased and unbiased multilayers was
studied in the Slonczewski-Weiss-McClure model, where
the effect of impurity scattering was treated in the self-
consistent Born approximation [13]. The classical and spin
Seebeck effects in single as well as in multilayer graphene
on a SiC substrate were also investigated within ab initio

methods [14,15], and by nonequilibrium molecular-dynamics
simulations [16].

Transport properties of graphene nanoribbons (GNRs) can
be different from those of the corresponding two-dimensional
graphene plane, mainly due to edge states and energy gaps
which develop in the electronic spectrum due to confinement.
In addition, the transport properties of GNRs also depend
on the edge shape. Thermoelectric properties of GNRs have
been investigated as well, and it has been shown that the
thermopower in GNRs can be remarkably larger than that
in planar graphene [17]. Moreover, the corresponding figure
of merit, ZT , can be enhanced by introducing randomly
distributed hydrogen vacancies into completely hydrogenated
GNRs [18]. Structural defects, especially in the form of
antidots, were also shown to be a promising way of enhancing
thermoelectric efficiency in GNRs [19–23]. In the case of
graphene nanowiggles (assembled graphene nanoribbons), a
special arrangement of the graphene patches can also affect
the figure of merit [24].

In this paper we focus on the electronic part of thermal
properties of graphene. When calculating the figure of merit
we include, however, the phonon term in the heat conductivity.
Such a term has been already discussed in details in several
papers (see, e.g., Refs. [25–28]). Apart from this, it has been
shown that the electronic term in the heat conductivity can
be dominant in devices of nanometer size, and this was also
confirmed experimentally in Refs. [29,30].
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In our consideration we take into account impurities which
lead to resonant states near the Fermi level. We show that the
resonant states result in a resonant enhancement of the Seebeck
coefficient. This enhancement can be observed, for instance,
when the Fermi level is tuned by an external gate voltage. In
our description we neglect the electron-electron interactions.
The effect of such an interaction on the thermal transport in
graphene has been discussed recently by Principi et al. [31],
where possible violation of the Wiedemann-Franz law also has
been discussed.

In Sec. II we describe the model and theoretical method
used to calculate the Seebeck coefficient. The relaxation time is
calculated in Sec. III. Numerical results on the thermoelectric
transport properties are presented and discussed in Sec. IV. The
Wiedemann-Franz law is briefly discussed in Sec. V, while the
final conclusions are in Sec. VI.

II. MODEL

In a clean (defect-free) graphene, the electronic states in the
vicinity of the Dirac points can be described by the following
low-energy Hamiltonian [32]:

Ĥ0 = −i�v (σx∇x + σy∇y), (1)

where v is the electron velocity in graphene, and σx , σy are the
Pauli matrices defined in the two-sublattice space of graphene.
This Hamiltonian describes two electron energy bands with
linear dispersion, ε(1,2)(k) = ±�vk. The electron velocity in
each of the bands is v(1,2)(k) = ±vk/k.

Assume that temperature gradient ∇T and external electric
field E are oriented along the axis x. Both ∇T and E drive
the system out of equilibrium. To calculate the distribution
function f (n)(r,k) of electrons in the nth energy band in the
nonequilibrium situation, we apply the Boltzmann kinetic
equation. For a small deviation δf (n) of the distribution
function from the equilibrium distribution f0, the Boltzmann
equation for δf (n) can be written in the relaxation time
approximation as

v(n)
x

(

−
∂f0

∂ε

)(

∇μ +
ε − μ

T
∇T − eE

)

= −
δf (n)

τ (n)
, (2)

where f (n)(r,k) = f0 + δf (n), τ (n) is the relaxation time in
the nth band, while μ is the chemical potential, which may
be spatially inhomogeneous along the axis x and thus ∇μ =

∂μ/∂x is a driving force as well.
Using the solution of Eq. (2), one can find the electric

current density j and the energy flux density JE along the axis
x, induced by the driving forces E, ∇T , and ∇μ [33],

j = e
∑

nk

v(n)
x δf (n) = e2K11E

− eK11T ∇
μ

T
− eK21

∇T

T
, (3)

JE =
∑

nk

v(n)
x ε(n) δf (n) = eK21 − K21T ∇

μ

T
− K31

∇T

T
,

(4)

where Krs are the kinetic coefficients for graphene,

Krs = −
1

4π�2

∫ ∞

−∞

|ε| εr−1τ s(ε)
∂f0

∂ε
dε. (5)

The integral in Eq. (5) runs over both energy bands, so τ (ε) is
equal to τ (1)(ε) for ε > 0, and τ (ε) = τ (2)(ε) for ε < 0. Note,
that the heat current density JQ is defined as JQ = JE − μj ,
so that JQ = JE when j = 0.

The thermoelectric Seebeck coefficient α and the heat
conductivity κ are defined from the relations Eα = α∇T and
JQ = −κ∇T when j = 0. Here, Eα is the electric field due to
the temperature gradient. In general, there is also a field related
to the chemical potential inhomogeneity, Eμ = ∇μ/e, so that
the total internal electric field for j = 0 is E = Eμ + Eα . This
leads to the standard expressions for the electrical conductivity
σ , thermoelectric Seebeck coefficient α, and heat conductance
κ [33],

σ = e2K11, (6)

α =
K21 − μK11

e T K11

, (7)

κe =
K31K11 − K2

21

T K11

, (8)

which are valid for graphene when the kinetic coefficients Krs

are calculated from Eq. (5).
To calculate the thermoelectric parameters, Eqs. (6)–(8), it

is necessary to know the energy dependence of the relaxation
time due to electron scattering from impurities and defects.
This problem is considered in the next section.

III. MOMENTUM RELAXATION TIME

The total Hamiltonian of graphene with impurities is
Ĥ = Ĥ0 +

∑

i V̂ (r − Ri), where V̂ (r − Ri) is a scattering
potential of a single impurity located at Ri , and the summation
runs over all randomly distributed impurities. We consider
the situation when the short-range-potential impurities are
distributed randomly with equal probabilities in the sublattices
A and B of the graphene. Correspondingly, the single-impurity
perturbation is either V̂ A(r) or V̂ B(r), where

V̂ A(B)(r) = V̂
A(B)

0 δ(r − RA(B)) (9)

and V̂
A(B)

0 = V0(σ0 ± σz)/2. Here, V0 is the impurity potential
strength, σ0 is the unit matrix in the sublattice space and
RA (RB) is a position vector of the impurity located in the
sublattice A (B).

The influence of a single impurity on the energy spectrum
and on the momentum relaxation time can be described in
terms of the T -matrix method [34]. The T -matrix equation in
the general case takes the form

T̂kk′(ε) = V̂kk′ +
∑

k′′

V̂kk′′Ĝk′′ (ε) T̂k′′k′ . (10)

where

Ĝk(ε) =
ε + σ · k

(ε + iδ)2 − (�vk)2
(11)
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is the retarded Green’s function of electrons in graphene
described by the Hamiltonian Ĥ0.

In the case of short-range impurities, one can find from
Eq. (10) the T matrix in the following form:

T̂ A,B(ε) =
V̂

A,B
0

1 − V0F (ε)
, (12)

where F (ε) is defined as

F (ε) =
∑

k

ε

(ε + iδ)2 − (�vk)2
. (13)

Using Eq. (12), and averaging over the impurity positions
(assuming the same probability to find an impurity in the
sublattices A and B), we find the self-energy due to scattering
on randomly distributed impurities in the form


̂(ε) =
NiV0 σ0

2 [1 − V0F (ε)]
, (14)

where Ni is the impurity concentration.
To find the relaxation time in the nth energy band (n = 1,2),

we have to diagonalize the operator Ĥeff ≡ Ĥ0 + 
̂(ε). Since
the self-energy (14) is proportional to the unit matrix σ0, the
operator Ĥeff is diagonalized by the same transformation as
Ĥ0. In other words, the electron relaxation time can be found
directly from Eq. (14) as

�

τ (ε)
= Im

NiV0

1 − V0F (ε)
. (15)

The above formula can be rewritten as

�

τ (ε)
=

NiV
2

0 |Im F (ε)|

[1 − V0 Re F (ε)]2 + V 2
0 [Im F (ε)]2

, (16)

where the real and imaginary parts of F (ε) can be calculated
from Eq. (13):

Re F (ε) ≃ −
ε

2π (�v)2
ln

�vkm

|ε|
, (17)

Im F (ε) ≃ −
ε

4(�v)2
. (18)

Here, km is a maximum value of the wave vector (cutoff) in
graphene, km = (|K| + |M|)/2, with K and M denoting the
wave vectors corresponding to the points K and M of the
graphene Brillouin zone.

The energy of resonant states localized at an impurity can
be found from the equation Re {1 − V0F (ε)} = 0. Figure 1(a)
presents the energy of resonant states as a function of the
normalized impurity potential V0/Vc, where Vc = ta2

0 , and
t = 3 eV is the nearest-neighbor hopping integral while
a0 = 1.42 Å is the carbon-carbon distance in graphene. Note
that the impurity potential strength V0 → ±∞ corresponds
to the model of a vacancy in graphene. The resonance
levels have negative energy for positive V0, i.e., they are
localized below the Fermi level, while for V0 < 0 the resonance
levels have positive energy [35]. The resonant state of a
particular energy strongly affects the energy dependence of
the momentum relaxation time τ (ε), as shown in Fig. 1(b). In
this figure the relaxation time is shown for three resonant states
corresponding to the points in Fig. 1(a). It is clearly visible that
the relaxation time is strongly suppressed at the corresponding

FIG. 1. (Color online) (a) Energy of the resonant states as a

function of the impurity potential V0/Vc. (b) Momentum relaxation

time τ as a function of electron energy ε, calculated for the impurity

concentration Ni = 2 × 1014 m−2, and for the resonant states (and

V0/Vc) corresponding to the points marked in (a).

resonance. Note that the relaxation time becomes divergent
at the the Fermi level (Dirac points). Accordingly, transport
properties are also strongly dependent on the presence of
resonance states.

IV. NUMERICAL RESULTS: THERMOPOWER

AND FIGURE OF MERIT ZT

Using Eqs. (3)–(5) we calculate first the electric current
for E = 0 and homogeneous chemical potential, ∇μ = 0. The
current is then solely induced by the temperature gradient, j =

σα∇T . In the following calculations we assume the param-
eters �v = 1.05 × 10−28 J m, km = 1.59 × 1010 m−1, Ni =

2 × 1014 m−2, and ∇T = 8000 K/m. Figure 2(a) presents the
thermoelectric current as a function of the chemical potential
μ, calculated for T = 300 K and for the resonance levels
corresponding to the indicated values of the impurity potential
V0/Vc. Note that μ = 0 corresponds to Fermi level EF of
pristine graphene (EF = 0). The electrochemical potential can
be tuned experimentally by an external gate voltage. As follows
from Fig. 2(a), the magnitude of current as well as its variation
with the chemical potential μ strongly depend on the impurity
potential V0, i.e., on the position of the resonance level.
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FIG. 2. (Color online) (a) Current induced by the temperature

gradient ∇T as a function of the chemical potential μ, calculated

for T = 300 K and for the indicated values of the impurity potential

V0/Vc (i.e., for the corresponding resonance levels). (b) Resistivity

of graphene vs μ for T = 300 K and indicated values of V0/Vc. The

inset in (b) shows the corresponding resistivity vs temperature for

chemical potentials corresponding to the resistance maxima in (b).

The other parameters are assumed as described in the main text.

Dependence of the thermoelectric current on the chemical
potential μ is closely related to the presence of resonance
states. This can be also seen from the resistivity behavior,
which has a pronounced maximum when the chemical poten-
tial is close to the energy of the resonance impurity state; see
Fig. 2(b). From the preceding section we know that location
of the resonance states is determined by the magnitude of
the impurity potential V0 [35]. To understand behavior of the
thermocurrent one should note that particles and holes flow
from the higher temperature to the lower one (from right to
left for the assumed temperature gradient). Figure 2 shows that
the thermocurrent vanishes at the chemical potential, where the
resistance achieves a maximum value, i.e., when the chemical
potential is close to the energy of the resonance state. At this
point the current due to electrons is compensated by the current
due to holes, so the total current vanishes. In turn, for higher
chemical potentials (to the right of the resistance maximum)
the particle current dominates and the total current is negative,
while for lower chemical potentials (to the left of the resistance
maximum) the hole current dominates and current is positive.

FIG. 3. (Color online) Seebeck coefficient α (thermopower) of

graphene as a function of the chemical potential μ for indicated

values of temperatures T and for V0/Vc = −100. Other parameters

are as described in the main text.

The above described behavior of the thermocurrent and
electrical resistivity is also reflected in the dependence of the
Seebeck coefficient α on the chemical potential μ. To calculate
α, we use Eq. (7) and assume parameters as described above.
Chemical potential dependence of α is presented in Fig. 3 for
V0/Vc = −100 and for three indicated temperatures. Obvi-
ously, the Seebeck coefficient (thermopower) is equal to zero
at the chemical potential where the thermocurrent vanishes,
i.e., when the chemical potential is close to the resonance
levels. For larger chemical potentials, the thermopower is
negative since the current is dominated by particles. In turn,
for lower chemical potentials the thermopower is positive
as the current is then dominated by holes. Interestingly, the
maxima in the absolute magnitude of the thermopower appear
at the points where the change in the corresponding resistance
(and thus also in transmission through the graphene) with the
chemical potential reaches a maximum. It should be noted
that in the model of nonresonant impurity scattering, Hwang
et al. [36] also has found a nonlinear temperature dependence
and saturation of the thermopower at low carrier density.

Figure 4 shows the corresponding figure of merit ZT ,
defined as

ZT =
T α2σ

κ
, (19)

where κ is the total thermal conductivity, which includes both
electron and phonon contributions, κ = κe + κp. Figure 4(a)
shows the maximum value of ZT , calculated as a function of
chemical potential in the limit of κp → 0. In turn, Fig. 4(b)
presents the figure of merit ZT calculated with the heat
conductivity including a nonzero phonon term equal to
κp = 40 × 10−9 W K−1. This conductivity is taken from the
experiment [37] performed at the room temperature. It should
be mentioned also that the thermal conductivity decreases with
decreasing temperature [29]. The thermal conductivity was
also measured by Fong et al. [38]. The temperature dependence
of ZT in Fig. 4(c) is shown for the values of chemical potentials
μ corresponding to the maximum value of ZT in Fig. 4(a).
Note that the figure of merit is equal to zero for the chemical
potential, where the thermopower vanishes (maxima of the
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FIG. 4. (Color online) Figure of merit ZT as a function of

the chemical potential μ for the neglected phonon term in the

thermal conductivity, κp = 0 (a), and with κp = 40 × 10−9 K−1W

(b), calculated for T = 300 K and for indicated values of V0/Vc.

(c) Temperature dependence of ZT for κp = 0, and for chemical

potentials corresponding to the maxima in ZT from (a). Other

parameters are as described in the main text.

resistance). However, there is a significant enhancement of the
figure of merit due to the resonant scattering from impurities,
and the enhancement appears at the chemical potential where
the electrical resistance varies rapidly with μ.

V. THE WIEDEMANN-FRANZ LAW FOR GRAPHENE

Let us consider now the Wiedemann-Franz law. In ordinary
metals this law states that the ratio κ/σT is constant,

κ

T σ
= L, (20)

where L = L0 = π2k2
B/3e2 = 2.44 × 10−8 W � K−2 is a con-

stant, known as the Lorentz number. The situation in graphene
is different. Strong energy dependence of the relaxation time
due to the presence of resonance states leads to a significant
dependence of the ratio κ/σT on the chemical potential μ, as
shown in Fig. 5 for T = 300 K and indicated values of the
impurity scattering potential V0. As one can see, this ratio is
not constant, but strongly depends on the chemical potential
μ, especially in the vicinity of the resonance states. Moreover,
the maximum value of this ratio also depends on the impurity
potential V0. However, far from the resonance states, when

FIG. 5. (Color online) The Wiedemann-Franz ratio as a function

of chemical potential μ for T = 300 K and for three indicated

values of the scattering potential (resonance levels) as well as for

a constant relaxation time (dotted line). The black line corresponds to

the Lorentz number in metals, L0 = 2.44 × 10−8 W � K−2, whereas

LG = 5.79 × 10−8 W � K−2 corresponds to the Wiedemann-Franz

ratio for graphene at μ = 0 for a constant relaxation time.

the Fermi level is well inside the upper (positive μ) or lower
(negative μ) band, the ratio κ/σT tends to the number typical
for metals, i.e., to L0. It is rather clear that the deviation of
the ratio κ/σT from L0 follows from the resonance states and
specific electronic structure of graphene. Similar deviations are
also known in other systems, for instance in transport through
nanoscopic quantum objects like quantum dots, molecules,
and others.

It is interesting to consider the situation which may be
directly compared to ordinary metals, i.e., when the relaxation
time due to impurity scattering is constant, τ = τ0, in the
vicinity of the point μ = 0. The corresponding ratio L is
shown in Fig. 5. When the chemical level is well inside the
valence or conduction bands, |μ| ≫ 0, the ratio κ/σT tends
to the Lorentz number L0. However, this ratio has a maximum
at μ = 0, i.e., at the point where the density of states in
graphene disappears. This maximum value at μ = 0 can be
calculated analytically assuming that the relaxation time is
constant τ = τ0 in the vicinity of the point μ = 0. In other
words, we assume that one can neglect the dependence of
τ on energy, δτ (ε)/τ ≪ 1 for |ε| � kBT , which is certainly
fulfilled at rather low temperatures for any dependence τ (ε).
In such a case, the kinetic coefficient K21 = 0, and the other
coefficients can be calculated analytically,

K11 =
τ0kBT ln 2

2π�2
, (21)

K31 =
9ζ (3)τ0k

3
BT 3

4π�2
. (22)

Using Eqs. (21) and (22), one can calculate the Lorentz number
for graphene at μ = 0,

LG ≡
κ

σT

∣

∣

∣

∣

μ=0

=
9k2

B ζ (3)

2e2 ln 2
, (23)
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where ζ (x) is the Riemann’s ζ function. This value of LG is
equal to 5.795 070 903 × 10−8 W � K−2.

Taking into account that L0 = π2k2
B/3e2, one finds

LG

L0

=
27 ζ (3)

2π2 ln 2
≃ 2.37. (24)

This result was obtained earlier by Saito et al. [29] for the
case of purely ballistic electric and thermal conductance
of graphene, when μ = 0. It was also found by Sharapov
et al. [39].

VI. SUMMARY AND CONCLUSIONS

We have analyzed theoretically the thermoelectric proper-
ties of graphene with impurities equally distributed in both A
and B sublattices. The assumed impurities lead to resonance
impurity states near the Fermi level, and therefore to resonance
electron scattering. In agrement with Mott’s law, the magnitude
of the Seebeck coefficient α and shape of its dependence on
the chemical potential are strongly affected be the dependence
of the conductivity on μ, which in turn is determined mainly
by the electron scattering from impurities in the vicinity of
resonance states. These resonant states also lead to a significant
enhancement of the figure of merit ZT .

We have also shown that the ratio κ/σT deviates from the
Lorentz number L0, and this deviation appears for chemical
potentials in the vicinity of the resonant states. Moreover, for a
fixed value of the relaxation time we have found an analytical
formula for the ratio κ/σT at μ = 0, which agrees with that
derived earlier.

In our calculations we introduced the impurity density
Ni , the impurity scattering potential V0, and the chemical

potential μ as independent parameters. This assumption can be
justified if there are other (not necessarily resonant) impurities
and defects in graphene. The chemical potential can be also
tuned by an external gate voltage, which gives an additional
experimental tool to study the thermoelectric properties of
graphene and their dependence on the above mentioned
parameters.

Our results are in agreement with other works [7,8], and
confirm that graphene with resonant impurities can be a
perspective material for thermoelectricity. Generally, search-
ing for best thermoelectric materials leads to a requirement
of a narrow peak of conductivity as a function of energy,
which gives a sharp dependence of the conductivity in
a narrow energy region [40,41]. In principle, our results
for graphene with resonant impurities leading to a sharp
dependence of electron mobility are in agreement with this
requirement. However, other scattering mechanisms, such as
phonon scattering, can make this dependence weaker, which
reduces the thermoelectric parameters. Thus, the predominant
resonant impurity scattering could be observed at rather low
temperatures, where the phonon scattering is suppressed, and
also when other nonresonant scattering processes are reduced.
General discussion of different scattering mechanisms in
graphene and their relation to transport properties can be found
in Ref. [42].
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